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Constrained affinity matrix for spectral clustering:
A basic semi-supervised extension

C. Castro, D. H. Peluffo, C. G. Castellanos

Abstract—Category 2. Spectral clustering has represented a
good alternative in digital signal processing and pattern recogni-
tion, however decisions concerning the affinity functions among
data is still an issue. In this work its presented an extended
version of a traditional multiclass spectral clustering method
which employs prior information about the classified data into
the affinity matrixes aiming to maintain the background relation
that might be lost in the traditional manner, that is using a scaled
exponential affinity matrix constrained by weighting the data
according to some prior knowledge and via k-way normalized
cuts clustering, results in a semi-supervised methodologyof
traditional spectral clustering. Test was performed over toy data
classification and image segmentation and evaluated with and
unsupervised performance measures (group coherence, fisher
criteria and silhouette).

Index Terms—Affinity matrix, kernel methods, prior informa-
tion, semi-supervised analysis, spectral clustering.

I. I NTRODUCTION

SPECTRAL clustering, which is an unsupervised method
of data analysis (that is does no require any prior data), is

a discriminative method based upon the graphs theory and has
as initialization parameters affinity matrixes and the number of
groups for classification[1]. In [2] some methods for estimating
the number of groups from small subsets of data based on the
spectral information provided from the data itself and from
affinity matrixes were explored, here a constrained affinity
matrix is proposed for a spectral clustering in order to enhance
the performance by ensuring some affinity coherence in the
clustering process.

In graph theory, affinity matrixes have the property and
capability of represent the relationship grade among nodes
since they are constructed as positive semi-definite symmetric
matrixes which values are can be define by several functions
including random, trivial (inner products row-wise from the
data matrix); in [3] is presented a weighted affinity matrix,
based on a vectorα such thatWα = X diag(α)XT and the
vector is obtained trough an iterative process calledQ−α.

Yet as the distance stands as a similitud measure, also
have been proposed affinity matrixes that includes distances
among data but that are smoothed by exponential functions
as in [4] where a global scale parameter in introduced into
an exponential affinity matrix. A more robust and enhanced
version of the previously mentioned was introduced by [5]
using a local scale parameter instead of a global one.
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Previous mentioned affinity matrixes uses weights as a pa-
rameter of smoothing the affinity and maintaining the internal
structure relation of the data, this is then the same conceptthat
uses Weighted Principal Component Analysis (WPCA) where
the covariance matrix is weighted either in the samples or in
the features matrixes as in [6], where a Weighted kernel PCA
method is used for a multi-way spectral clustering algorithm
with out-of-sample extension.

In general, spectral clustering uses the information provided
by such affinity matrix to classify the data according to their
relations, nonetheless the criteria for which the affinity matrix
considers data to be similar or not is not always the same
even when data has the same nature, and thus the clustering
performance might decrease. Yet as an alternative you might
introduce prior knowledge to the clustering procedure to
ensure some stability, that is, a semi-supervised clustering.
Here, its proposed an alternative solution to this by introducing
a constrained affinity matrix, the affinity is define by a scaled
exponential matrix, which is constrained by assigning a great
value to those elements that prior to clustering are known
to belong to a given class or cluster. For evaluation of the
proposed affinity matrix, clustering is performed for toy-data
classification and image segmentation based on pixel-by-pixel
clustering, via different clustering algorithms, first as reference
k-means is performed, second for the evaluation of the affinity
matrix, we test the semisupervised affinity matrix via the
evaluation of two different spectral clustering algorithms, a
multiclass spectral clustering proposed by [7] and a multiway
spectral clustering [6]. Performance is evaluated in terms of
unsupervised measures as groups coherence[1], fisher criteria
and silhouette.

II. T HEORETICAL FRAMEWORK

A. Preliminaries on Spectral Analysis and Graph theory

Signal analysis and data clustering based upon spectral
information provided by the internal distribution and structure
of the observations is a common discriminative technique
that does not require any prior information such as structure
supposition, partitions distributions etc. Instead is based in
statistical global criteria that estimates the probability that two
observations belong to the same class. This criteria or analysis
can be describe from the graph theory where such probability
is define as the affinity between the nodes in the graph, that
is, the weight value of the link that connects them.

Now, having a definition of affinity parting from a graph,
we can expect that given a set of observations or pixels,
those which belongs to the same class or subset ofG have
a higher affinity among them and lower to those in different



classes. In the next sections we show two different affinity
matrices, the locally scaled exponential affinity matrix[5] and
the one proposed here, the constraint affinity matrix where the
restriction of high affinity for known observations is expected
to enhance the clustering process since some regularity is
ensure in the probabilistic information of the data.

B. Exponential Affinity Matrix

Let X be an n× p matrix, where n is the number of
observations andp the number of features, we define the
exponential affinity matrixŴ as,

ŵi j = exp

(

− d2(xi ,x j)
σi σ j

)

with σi = d(xi ,xN)
(1)

where in Equation1 we have that,xi is each data vector,
d(xi ,x j) is the Euclidean distance between vectors andσi is
the local scale parameter, withxN being theN−th neighbor
of xi .
Now, let us define the diagonal normalization matrixD as,

dii =
n
∑
j=1

ŵi j and construct the normalized affinity matrixL

L = D−1/2ŴD−1/2 (2)

This matrix is then the used in the clustering process.

C. Constraint Affinity Matrix

As mentioned before, in a given set of observations de-
scribed by a graphG, is expected that those which belong to
the same class to have higher affinity among them a lower with
respect to the rest. Moreover, based on the Perron-Frobenius
theorem and the eigen-decomposition of irreducibly positive
matrixes, the space generated by the eigen-vector is directly
related with the quality of a clustering process [8].

Hence, where introducing some prior information into the
affinity distribution of a given set, the eigen-space generated
is expected to have some regularity and coherence within
the clusters. This constraint, induces then a semi-supervised
procedure into the clustering process, but is expected to
enhance the performance.

Thereby we can define a constraint affinity matrixW̃ as

w̃i j =















exp

(

− d2(xi ,x j)
σi σ j

)

if i j /∈ I

ϒ if i j ∈ I

(3)

where in Equation3 we have thatI is am×2 constraint matrix,
with m being twice the number of known links connections
row-wise andϒ a positive constant such asϒ ∈ N, i.e. given
the graph depicted in Figure1, where the red and blue nodes
denotes two different classes and the orange links are known
to belong to a given class, the constraint matrixI is,
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Fig. 1: Undirected graph (wi j =w ji ), with known links(orange links).

D. Multiclass Spectral Clustering

Multiclass spectral clustering proposed by [7] its based on
the solution of the objective function

maximize{ε (M)} =
1
k

k

∑
l=1

MT
l WM l

MT
l DM l

(4)

s.t.M ∈ {0,1}n×k M1k = 1n,

which is called the Normalized Cuts Problem (NCPM, where
M denotes that the optimization problem is respect to the
partition matrixM ). And W is the affinity matrix,D is the
degree matrix

M = [ml ] l = 1, . . . ,k (5)

c = W1n (6)

D = Diag(c) (7)

where in equation5, M is a binary partition matrix that rep-
resents the membership of a given observation to a partition,
that is,ml is a binary column formed asmil = 〈i ∈Vl 〉 i ∈V,
being 〈·〉 a binary operator that is 1 if true and 0 otherwise
andVl is the l -th partition of the graph set. MatrixD is the
degree matrix.

However, this spectral analysis obtains global-optimal so-
lutions in the continuos eigenspace generated by the partition
and degree matrix, and hence in contained in a high dimen-
sional space and has no restrictions and hast therefor the need
of getting a discrete solution with an approximate discrete
optimal as it is detailed in [7].

III. E XPERIMENTAL SETUP

Evaluation of the proposed semi-supervised affinity is made
in comparison to common unsupervised clustering methods
under the analysis of toy-data and image segmentation. Toy-
data is numerically generated with different patterns and
number of groups to demonstrate stability of the affinity
proposition; 15 different toy-data two dimensional patterns are



used for clustering, having different number of classes being
the lowest 2 and 31 the highest.

On the other hand multiclass spectral clustering has been
successfully applied to image segmentation from a pixel by
pixel clustering so the Berkeley database for image segmen-
tation is used [9].

To asses clustering we compare against two unsupervised
methods: k-means and multiclass spectral clustering with
scaled exponential affinity matrix. The performance of those
is the compared against the performance of the multiclass
spectral clustering method with a semi-supervised affinity
matrix.

A. Database

1) Synthetic Data:Synthetic data used is a set of different
multiclass datasets, with multiple observation, featuresand
classes. This data is not linearly easily separable and is often
used for testing and tuning of clustering methods. TableI
shows the summary of the synthetic data

TABLE I: Synthetic Database Description

Dataset Observations Features Classes Cite
Cluster2Circle1 238 2 3

[5]

HappyFace 266 2 3
Bullseye3 299 2 3

Clusters2Noise 300 2 3
Cluster3 303 2 3
Bullseye2 500 2 2

Lines4 512 2 4
Gaussians4 1000 2 4

Clusters5Noise 622 2 5
Spiral 312 2 3

[10]PathBased 300 2 3
Flame 240 2 2 [11]
Jain 373 2 2 [12]

Compound 622 2 5 [13]
Aggregation 788 2 7 [14]

D31 3100 2 31 [15]

2) Berkeley Segmentation Dataset:This database is com-
posed of 300 481× 321 or 321× 481 pixels jpeg images.
Database is separated intotrain with 200 images andtestwith
the rest 100. Since segmentation is based in a pixel by pixel
unsupervised and semisupervised clustering, each pixel has to
be considered an observation, hence affinity matrixes are too
big for numerical computation so images are resized into a one
eight of their original size, that is from 481×321 to 61×41
and from 321×481 to 41×61. Now each pixel is characterized
into color spaces formsrgb, hsv, ycc, lab and luv, so that
for color RGB images we have 3 features per color per pixel
for a subtotal of 15 features, finally the spatialx,y location of
the observation is added. Hence the image pixel feature matrix
size would be 2501×17.

B. Methods and Algorithms

C. Performance Evaluation

In order to asses the clustering performance, we employed
three measures namely. Firstly, cluster coherence that quan-
tifies the clustering quality in terms of the cluster affinity
associations. The second one is the well known fisher criterion
index. Finally, the mean and standard deviation of silhouette
of each data point is also considered.

Algorithm 1 Evaluation of proposed constraint for clustering

1: Initialization: For a dataset matrixX, choose ak num-
ber of classes, a clustering algorithm, eitherk-meansor
Multiclass Spectral Clustering.

2: if k-meansthen
3: Do k-means on X matrix and go to step8.
4: else if Multiclass Spectral Clusteringthen
5: Determine if procedure is unsupervised or semisuper-

vised, and compute the respective affinity matrix as in
sectionII-B or II-C.

6: Realize the clustering procedure with the respective
affinity matrix and go to step8.

7: end if
8: Compute performance measures: Fisher Criteria, Groups

Coherence and Silhouette to evaluate clustering.

TABLE II: Applied performance measures

Measure Description
Fisher Criterion Indicates an adequate clustering when the greater is its value.

J J =

k
∑

j=1
qk−q̂

tr(∑Σ j )
whereq j is the mean ofi-th cluster,q̂ is the mean

of whole dataX andΣ j is the covariance
matrix associated to clusterj.

Cluster Coherence It is ranged into[−1,1] and close to 1 when well clustering.

εM εM = 1
k

k
∑

l=1

MT
l M l

MT
l DM l

Silhouette It ranges from−1 to 1, being 1 when clustering adequately.

S si =
min(bi−ai )

max(ai ,min(b))

whereai is the average distance from thei-th point to the other
points in its cluster,bi = (bi

1, . . . ,b
i
k) andbi

j is
the average distance from thei-th point to

points from clusterj.

IV. RESULTS AND DISCUSSION

Results shown that including prior information into the
affinity structure of the data may influence into the spectral
analysis, moreover the value of theϒ constant in the semisu-
pervised analysis has a major influence into the performance
of the clustering process.

Hence it is necessary to generate affinity matrixes that can
take this semisupervised approach into a better account, since
the nature of the exponential affinity matrix based upon an
euclidean distance limits the performance.

A. Toydata

TablesIII , IV andV show the perfomance results obtained
for the toydata, it can be seen that spectral approaches to hard
clustering problem allow to enhance the performance, however
the semisupervised approach does not provide an stable value
for the constanϒ which might be given the exponential nature
of the matrix.

Nonetheless the results of the semisupervised approach
might be useful for providing a tradeoff performance when
dealing with several performance measures, since the be-
havior has exposed that the semisupervised approach, more
specifically the value of the constantϒ influence all the used
measures since affects directly both the output clusteringlabels
and the affinity used for analysis.



TABLE III: K-means clustering performance for toydata.

Dataset k µS σS J ε
Aggregation 8 0.6313 0.2356 29.5832 0.9427

Bullseye2 3 0.5670 0.2312 3.2782 0.9816
Bullseye3 4 0.4649 .2761 4.0039 0.9577

Clusters2Circle1 4 0.8855 0.1930 13.4637 0.9324
Clusters2Noise 4 0.7022 0.2097 6.8112 0.9070

Clusters3 4 0.7469 0.2278 31.8204 0.9581
Clusters5Noise 7 0.7822 0.2152 13.3284 0.9210

Compound 6 0.6062 0.2534 32.7492 0.8971
D31 32 0.6813 0.2358 164.9440 0.8580

Flame 3 0.5772 0.2479 25.5294 0.9252
Gaussians4 5 0.7384 0.1965 21.9565 0.9706
HappyFace 3 0.7142 0.2242 10.9893 0.9833

Jain 3 0.6591 0.2523 12.6131 0.9802
Lines4 5 0.6224 0.2725 10.6681 0.9788

Pathbased 4 0.6287 0.2262 7.8660 0.9476
Spiral 4 0.5243 0.2211 5.0509 0.9408

TABLE IV: Multiclass Spectral Clustering performances with regu-
lar affinity matrix.

Dataset k µS σS J ε
Aggregation 8 0.6539 0.2789 39.2189 0.9775

Bullseye2 3 0.1847 0.2986 1.1506 0.9995
Bullseye3 4 −0.0350 0.5909 0.4049 0.9925

Clusters2Circle1 4 0.6519 0.6396 2.9398 0.9806
Clusters2Noise 4 0.2606 0.7384 0.7177 0.9773

Clusters3 4 0.7493 0.2691 19.7965 0.9682
Clusters5Noise 7 0.6258 0.6971 3.0167 0.9870

Compound 6 0.5437 0.3150 38.2338 0.9132
D31 32 0.7593 0.1907 186.0452 0.9240

Flame 3 0.5681 0.2774 25.6426 0.9494
Gaussians4 5 0.7850 0.1881 22.9379 0.9862
HappyFace 3 0.6286 0.4194 9.3491 0.9998

Jain 3 0.5985 0.3357 9.4346 0.9946
Lines4 5 0.5549 0.4156 5.3322 0.9931

Pathbased 4 0.6396 0.2924 7.4782 0.9687
Spiral 4 −0.2249 0.5599 0.6750 0.9821

Figures2 to 3 shows some clustering results and the original
clustering.

Notice the in the case of k-means clustering and multiclass
spectral clustering, the number of clusters is one more of the
original, this was done to provide a certain error margen in the
experiments and visualiza how the classes distribution could
change.

It can be seeing that even when the semisupervised analysis
does not enhances the performances in a great measure, it gives
a certain structure to the clustering, and the clustering error
can be attribute to the extra class restriction, moreover that
class is usually adjacent to another and can be corrected with

TABLE V: Multiclass Spectral Clustering performances with con-
straint affinity matrix..

Dataset k ϒ µS σS J ε
Aggregation 8 0.00 0.6508 0.2825 38.8230 0.9773

Bullseye2 3 0.00 0.1931 0.2699 0.5590 0.9997
Bullseye3 4 1.00 −0.1761 0.5455 6.9584 0.9318

Clusters2Circle1 4 0.00 0.6684 0.6277 2.9568 0.9847
Clusters2Noise 4 0.00 0.4821 0.7385 1.3175 0.9731

Clusters3 4 0.01 0.7674 0.2559 20.5451 0.9497
Clusters5Noise 7 0.00 0.6179 0.6982 3.9521 0.9856

Compound 6 0.01 0.5413 0.3033 38.5231 0.9202
D31 32 0.00 0.7577 0.1986 188.5219 0.9270

Flame 3 0.01 0.5762 0.2649 25.3342 0.9459
Gaussians4 5 0.01 0.7549 0.2276 25.6871 0.9472
HappyFace 3 0.00 0.6377 0.3986 9.5429 0.9993

Jain 3 0.00 0.5861 0.3481 9.5113 0.9932
Lines4 5 0.01 0.3910 0.5198 9.3212 0.9628

Pathbased 4 0.01 0.6325 0.2702 7.9252 0.9513
Spiral 4 1.00 −0.1963 0.4985 4.9115 0.9341
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(c) Multiclass Spectral Clustering
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(d) Multiclass Spectral Clustering
with constraint affinity matrix.

Fig. 2: Results for Aggregation Dataset.
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(a) Original Bullseye 3 cores,
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(b) K-means Clustering.
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(c) Multiclass Spectral Clustering
with regular affinity matrix.
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(d) Multiclass Spectral Clustering
with constraint affinity matrix.

Fig. 3: Results for Bulleye3 Dataset.

a hierarchical clustering procedure.

B. Images

In general, we can appreciate that taking advantages of the
original labels of data clustering performance can be enhanced.
We set to be constant valueϒ the affinity value between data
points priori established to belong into the same cluster in
accordance the labels. Nonetheless, from experimental results
we can note that setting a constant value for connected data
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(a) Image 60079 resized to 1/8 of the original size.
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(b) Image 118035 resized to 1/8 of the original size.

Fig. 4: Resized Images.
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Fig. 5: Eigenvector Plot for unsupervised and semisupervised analysis
of image4(a).
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Fig. 6: Segmentation of image4(a) with multiclass spectral cluster-
ing.

points is not a stable approach. It works well when some
compactness level is guaranteed. This can be attributed to
either selection of parameterϒ is not an arbitrary task and
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Fig. 7: Eigenvector Plot for unsupervised and semisupervised analysis
of image4(b).
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Fig. 8: Segmentation of image4(b) with multiclass spectral cluster-
ing.

semi-supervised extensions should not only take into account
information given by original data but also that given by
eigenvectors.

As mentioned in the toydata results section, a hierarchical
procedure can be added to the semisupervised analysis to
enhance the performance of the segmentation, this is visually
achievable in the segmentation images, since adjacency of the
clusters is regular. Moreover if considering the resolution loss

TABLE VI: Multiclass Spectral Clustering with Regular Affinity
Matrix

Image k µS σS J εm

12003 8 0.6070 0.3187 7.9393 0.7008
60079 5 0.6062 0.2925 7.0013 0.7184
37073 13 0.5358 0.3133 5.4993 0.5722
113044 7 0.6339 0.3187 7.7124 0.6478
145086 25 0.3849 0.3100 3.9569 0.2735
118035 22 0.4810 0.3499 6.1655 0.3967



TABLE VII: Multiclass Spectral Clustering with Constraint Affinity
Matrix

Image k ϒ µS σS

12003 8 2.5 0.6926 0.3319
60079 5 2.5 0.6706 0.2795
37073 13 10 0.5631 0.2786
113044 7 2.5 0.6690 0.3029
145086 25 100 0.5569 0.2692
118035 22 5 0.5273 0.3123
Image k ϒ J
12003 8 100 10.1774
60079 5 25 11.3640
37073 13 10 6.2830
113044 7 5 8.5933
145086 25 100 5.8939
118035 22 0 7.4803
Image k ϒ εm

12003 8 0 0.7058
60079 5 0 0.7184
37073 13 0.01 0.5840
113044 7 0 0.6513
145086 25 0.00001 0.5225
118035 22 0 0.4843

for the resizing transformation, performance can be penalized.

V. CONCLUSIONS ANDFUTURE WORK

Semi-supervised approaches take place under the premise
that by adding priori true information about the original
data, i.e., labels to set in advance the cluster membership of
some data points, clustering performance can be significantly
enhanced. In this work, we presented a basic semi-supervised
extension for basic multi class spectral clustering by setting a
constant value for connected data points. From experimental
results, method showed to work well when some compactness
and separability level is guaranteed. This fact can be attributed
to parameter selection for constrained affinity matrix must
be done taking into consideration the original features space
representation but eigenspace information as well.

As a future work, new semi-supervised extensions for
spectral clustering are to be designed where formulation and
parameter tunning are carried out in such way eigenvectors
are separable.
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