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Constrained affinity matrix for spectral clustering:
A basic semi-supervised extension

C. Castro, D. H. Peluffo, C. G. Castellanos

Abstract—Category 2. Spectral clustering has represented a  Previous mentioned affinity matrixes uses weights as a pa-
good alternative in digital signal processing and pattern ecogni-  rameter of smoothing the affinity and maintaining the in&rn
tion, however decisions concerning the affinity functions mong structure relation of the data, this is then the same cortbapt
data is still an issue. In this work its presented an extended . L ' .
version of a traditional multiclass spectral clustering mehod uses We'thed Pl’ln(?lp?J Co.mponenF Ana!yS|s (WPCA) Wher.e
which employs prior information about the classified data ito  the covariance matrix is weighted either in the samples or in
the affinity matrixes aiming to maintain the background relation  the features matrixes as if][ where a Weighted kernel PCA
that might be lost in the traditional manner, that is using a ccaled  method is used for a multi-way spectral clustering algomith
exponential affinity matrix constrained by weighting the daa with out-of-sample extension.

according to some prior knowledge and via k-way normalized | | tral clusteri the inf fi .
cuts clustering, results in a semi-supervised methodologyf n general, spectral clustering uses the information predi

traditional spectral clustering. Test was performed over by data by such affinity matrix to classify the data according to thei
classification and image segmentation and evaluated with an relations, nonetheless the criteria for which the affinitgtrix

unsupervised performance measures (group coherence, fishe considers data to be similar or not is not always the same
criteria and silhouette). even when data has the same nature, and thus the clustering
Index Terms—Affinity matrix, kernel methods, prior informa-  performance might decrease. Yet as an alternative you might

tion, semi-supervised analysis, spectral clustering. introduce prior knowledge to the clustering procedure to
ensure some stability, that is, a semi-supervised clusteri
|. INTRODUCTION Here, its proposed an alternative solution to this by inicdg

PECTRAL clustering, which is an unsupervised methoal constrained affinity matrix, the affinity is define by a sdale
of data analysis (that is does no require any prior data),@gponential matrix, which is constrained by assigning agre

a discriminative method based upon the graphs theory and akie to those elements that prior to clustering are known
as initialization parameters affinity matrixes and the namif to belong to a given class or cluster. For evaluation of the
groups for classificatiod]. In [2] some methods for estimatingproposed affinity matrix, clustering is performed for togta
the number of groups from small subsets of data based on thessification and image segmentation based on pixel-Jstpi
spectral information provided from the data itself and frorolustering, via different clustering algorithms, first agarence
affinity matrixes were explored, here a constrained affini-means is performed, second for the evaluation of the sffini
matrix is proposed for a spectral clustering in order to ecba matrix, we test the semisupervised affinity matrix via the
the performance by ensuring some affinity coherence in thealuation of two different spectral clustering algoritna
clustering process. multiclass spectral clustering proposed @y &and a multiway

In graph theory, affinity matrixes have the property anspectral clusteringg]. Performance is evaluated in terms of
capability of represent the relationship grade among nodassupervised measures as groups coherghdegher criteria
since they are constructed as positive semi-definite synonefind silhouette.
matrixes which values are can be define by several functions
including random, trivial (inner products row-wise frometh 1. THEORETICAL FRAMEWORK
data matrix); in B] is presented a weighted affinity matrix, L )
based on a vectosr such thatWq = X diag(a)XT and the A. Preliminaries on Spectral Analysis and Graph theory
vector is obtained trough an iterative process called a. Signal analysis and data clustering based upon spectral

Yet as the distance stands as a similitud measure, aisformation provided by the internal distribution and stiure
have been proposed affinity matrixes that includes disened the observations is a common discriminative technique
among data but that are smoothed by exponential functiahsit does not require any prior information such as strectur
as in @] where a global scale parameter in introduced intsupposition, partitions distributions etc. Instead isdoh#
an exponential affinity matrix. A more robust and enhancestiatistical global criteria that estimates the probapitfiat two
version of the previously mentioned was introduced By [ observations belong to the same class. This criteria oysisal
using a local scale parameter instead of a global one. can be describe from the graph theory where such probability

L ) _ is define as the affinity between the nodes in the graph, that
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classes. In the next sections we show two different affinity W1 @/ 1\)
matrices, the locally scaled exponential affinity ma&}x@nd

the one proposed here, the constraint affinity matrix whieee t
restriction of high affinity for known observations is expst

to enhance the clustering process since some regularity is
ensure in the probabilistic information of the data.

W33 We6

B. Exponential Affinity Matrix

Let X be annx p matrix, wheren is the number of
observations ancg the number of features, we define the
exponential affinity matridV as,

e Xj Xj
) (1)
Wij = exp with gy = d(xj,xn)
where in Equationl we have thatx; is each data vector,
d(xi,x;) is the Euclidean distance between vectors anib Wag
the local scale parameter, witty being theN—th neighbor Fig. 1: Undirected graphv; = wj;), with known links(orange links).
of X;.
Now, let us define the diagonal normalization matibxas,

n

di = Y Wi and construct the normalized affinity matlix ~ D. Multiclass Spectral Clustering
51

Lar 1/ Multiclass spectral clustering proposed ¥ fts based on
L=DY2WDV (2) the solution of the objective function

This matrix is then the used in the clustering process.

. - . K MIwM
C. Constraint Affinity Matrix maximize{e (M)} = 1o MWM, ()
. . . . kl:l M?—DM|
As mentioned before, in a given set of observations de- ek
scribed by a grapl®, is expected that those which belong to s.tM € {0,1} M1y =1y,

the same class to have higher affinity among them a lower WWhich is called the Normalized Cuts Problem (NCPM, where

respect to the rest._ Moreover, bas_e_d on the Perr_on—Frosb_e_w denotes that the optimization problem is respect to the
theorem and the eigen-decomposition of irreducibly m't'%artition matrixM). And W is the affinity matrix,D is the

matrixes, the space generated by the eigen-vector is lgire egree matrix
related with the quality of a clustering proces$. [
Hence, where introducing some prior information into the

affinity distribution of a given set, the eigen-space getaegta M = m] I=1..k (5)
is expected to have some regularity and coherence within c = Wi, (6)
the clusters. This constraint, induces then a semi-sugevi D — Diag(c) 7)

procedure into the clustering process, but is expected to
enhance the performance. . where in equatiod, M is a binary partition matrix that rep-
Thereby we can define a constraint affinity matik as resents the membership of a given observation to a partition
~ 2(x,) that is,m, is a binary column formed asy = (i€ V) i €V,
(T}J) o being (-) a binary operator that is 1 if true and O otherwise
exp if ij &1 (3) andV is thel-th partition of the graph set. Matri® is the
degree matrix.

Y ifij €l However, this spectral analysis obtains global-optimal so
where in Equatior® we have that is amx 2 constraint matrix, lutions in the continuos eigenspace generated by the ipartit
with m being twice the number of known links connectionand degree matrix, and hence in contained in a high dimen-
row-wise andY a positive constant such &6c N, i.e. given sional space and has no restrictions and hast therefor e ne
the graph depicted in Figure where the red and blue nodeof getting a discrete solution with an approximate discrete
denotes two different classes and the orange links are knoegtimal as it is detailed in7].
to belong to a given class, the constraint matris,

Wij =

IIl. EXPERIMENTAL SETUP

é i’ Evaluation of the proposed semi-supervised affinity is made
5 6 in comparison to common unsupervised clustering methods
I = 6 5 under the analysis of toy-data and image segmentation. Toy-
4 8 data is numerically generated with different patterns and
8 4 number of groups to demonstrate stability of the affinity

proposition; 15 different toy-data two dimensional patteare



used for clustering, having different number of classesdeiAlgorithm 1 Evaluation of proposed constraint for clustering
the lowest 2 and 31 the highest. 1: Initialization: For a dataset matriX, choose ak num-

On the other hand multiclass spectral clustering has been ber of classes, a clustering algorithm, eitkemeansor
successfully applied to image segmentation from a pixel by Multiclass Spectral Clustering
pixel clustering so the Berkeley database for image segmen- if k-meansthen
tation is used 9. 3: Do k-means on X matrix and go to st&p

To asses clustering we compare against two unsupervised else if Multiclass Spectral Clusterinthen
methods: k-means and multiclass spectral clustering withs:  Determine if procedure is unsupervised or semisuper-
scaled exponential affinity matrix. The performance of ¢hos vised, and compute the respective affinity matrix as in
is the compared against the performance of the multiclass  sectionll-B or II-C.
spectral clustering method with a semi-supervised affinitys:  Realize the clustering procedure with the respective

matrix. affinity matrix and go to ste8.
7. end if
A. Database 8: Compute performance measures: Fisher Criteria, Groups

1) Synthetic Data:Synthetic data used is a set of different Coherence and Silhouette to evaluate clustering.
multiclass datasets, with multiple observation, featusesl
classes. This data is not linearly easily separable andtés of TABLE II: Applied performance measures
used for testing and tuning of clustering methods. Table

: Measure Description
shows the summary of the synthet|c data Fisher Criterion Indicates an adequate clustering when the greater is iteval
K
TABLE I: Synthetic Database Description 3 B
tr(y 2
Dataset Observations | Features | Classes | Cite whereq; is the mean oi—(tzh Jc>|uster,f4 is the mean
Cluster2Circlel 238 2 3 of whole dataX andZ; is the covariance
HappyFace 266 2 3 matrix associated to clustgr
Bullseye3 299 2 3 Cluster Coherence It is ranged into[—1,1] and close to 1 when well clustering.
Clusters2Noise 300 2 3 Lk MTmMm,
Cluster3 303 2 3 &m &M =K% 2 VDM
1=1 M, |
Bu_lIseyeZ 500 2 2 Silhouette It ranges from—1 to 1, being 1 when clustering adequately.
Lines4 512 2 4 T mintbi—a)
Gaussiansd 1000 2 Z (5] S S = maxa; mnb))
ClustersbNoise 622 2 5 whereg; is the average distance from théh point to the other
Spiral 312 > 3 points in its clusterb; = (b},...,bj) andb) is
PathBased 300 2 3 [10 the average distance from tixh point to
Flame 240 2 2 11] points from clusterj.
Jain 373 2 2 12]
Compound 622 2 5 13
Aggregation 788 2 7 14
D31 3100 2 3 19 IV. RESULTS AND DISCUSSION

2) Berkeley Segmentation Datasdthis database is com- _Rgsults shown that including prior information into the
posed of 300 48% 321 or 321x 481 pixels jpeg images. afflnlty_ structure of the data may influence |_nto the sp.ectral
Database is separated irttain with 200 images antestwith an2lysis, moreover the value of theconstant in the semisu-
the rest 100. Since segmentation is based in a pixel by pi)parwsed anal_y3|s has a major influence into the performance
unsupervised and semisupervised clustering, each piseicha®' e clustering process. N _
be considered an observation, hence affinity matrixes are to Hence it is necessary to generate affinity matrixes that can

big for numerical computation so images are resized intoea offk€ this semisupervised approach into a better accoumae si

eight of their original size, that is from 484321 to 61x 41 the _nature 9f the e>_<p9nential affinity matrix based upon an
and from 321x 481 to 41x 61. Now each pixel is characterizecfuclidean distance limits the performance.

into color spaces formggb, hsv, ycc, lab and luy so that

for color RGB images we have 3 features per color per pixAl Toydata

for a subtotal of 15 features, finally the spatigy location of  TaplesiiI, IV andV show the perfomance results obtained
the observation is added. Hence the image pixel featureéxmaty, the toydata, it can be seen that spectral approachesdo ha
size would be 250% 17. clustering problem allow to enhance the performance, hewev
the semisupervised approach does not provide an stable valu
for the constarY"which might be given the exponential nature
of the matrix.

C. Performance Evaluation Nonetheless the results of the semisupervised approach
In order to asses the clustering performance, we employmibht be useful for providing a tradeoff performance when
three measures namely. Firstly, cluster coherence thai-qudealing with several performance measures, since the be-
tifies the clustering quality in terms of the cluster affinitthavior has exposed that the semisupervised approach, more
associations. The second one is the well known fisher ariterispecifically the value of the constaxitinfluence all the used
index. Finally, the mean and standard deviation of silh@uetmeasures since affects directly both the output clustdaingls

of each data point is also considered. and the affinity used for analysis.

B. Methods and Algorithms



TABLE IlIl: K-means clustering performance for toydata. original Dataset @

Dataset k Us Os J € » 2
Aggregation 8 | 06313 | 0.2356 | 295832 | 0.9427 .
Bullseye2 3 | 05670 | 0.2312 | 32782 | 0.9816 20l - G
Bullseye3 4 | 04649 | 2761 40039 | 09577 P £
Clusters2Circlel 4 0.8855 | 0.1930 13.4637 0.9324 515 b4
Clusters2Noise 4 0.7022 | 0.2097 6.8112 0.9070 - 10
Clusters3 4 | 07469 | 0.2278 | 318204 | 0.9581 1°
Clusters5Noise 7 0.7822 | 0.2152 | 133284 | 0.9210 5 5
Compound 6 | 06062 | 0.2534 | 327492 | 0.8971 :
D31 32 0.6813 | 0.2358 | 1649440 | 0.8580 5 10 15 2 25 30 35 5 10 15 20 25 30 35
Flame 3 | 05772 | 0.2479 | 255294 | 0.9252 Featre 1 Feare 1
Gaussians4 5 | 07384 | 0.1965 | 219565 | 0.9706 (a) Original Aggregation Dataset. (b) K-means Clustering.
HappyFace 3 0.7142 | 0.2242 10.9893 0.9833 © i
Jain 3 0.6591 | 0.2523 126131 0.9802
Lines4 5 | 0.6224 | 0.2725 | 106681 | 0.9788 ” 2
Pathbased 4 0.6287 | 0.2262 7.8660 0.9476
Spiral 4 | 05243 | 02211 | 50509 | 0.9408 ) 2

Feature 2
e
o
Feature 2
o

TABLE IV: Multiclass Spectral Clustering performances with regu-

lar affinity matrix. 10 2 1
Dataset k Us Os J £ 5 _ 5t A,
Aggregation 8 0.6539 | 0.2789 | 392189 | 0.9775 &%ﬁ‘ ’iﬁ
Bullseye2 3 0.1847 0.2986 1.1506 0.9995 T s w0 s B s W %
Bullseye3 4 | —0.0350 | 05909 | 0.4049 | 0.9925
Clusters2Circlel | 4 0.6519 | 0.6396 | 2.9398 | 0.9806 (c) Multiclass Spectral Clusterin¢d) Multiclass Spectral Clustering
Clusters2Noise | 4 0.2606 | 0.7384 | 0.7177 | 0.9773 with regular affinity matrix. with constraint affinity matrix.
Clusters3 4 0.7493 | 0.2691 | 197965 | 0.9682
Clusters5Noise 7 0.6258 0.6971 3.0167 0.9870 ; . :
Compound 6 05437 | 0.3150 | 382338 | 0.9132 Fig. 2: Results for Aggregation Dataset.
D31 32 | 07593 | 0.1907 | 1860452 | 0.9240
Flame 3 05681 | 0.2774 | 256426 | 0.9494 Original Dataset T
Gaussians4 5 0.7850 | 0.1881 | 229379 | 0.9862 RN og Lt e
HappyFace 3 0.6286 | 0.4194 | 93491 | 0.9998 oF o8 *%, L T
Jain 3 05985 | 0.3357 | 94346 | 0.9946 ort o° N R T
Lines4 5 05549 | 0.4156 | 53322 | 0.9931 el 8 SN 5| os X I
Pathbased 4 0.6396 | 0.2924 | 7.4782 | 0.9687 PR I 9 NS o s R
Spiral 4 | —02249 | 05599 | 06750 | 0.9821 505 e .o i **xx% . &
uM v: »ﬁ‘*,-;a"*’ @ 0.4 . &me%gm 50
o g, oo” O B \ 5@’
Figures2 to 3 shows some clustering results and the original °* 7% 859%,% *
Clusterlng_ 0.1 0.2 03 0F:amre°15 0.6 0.7 0.8 0.1 02 03 %:atuveols 0.6 0.7 0.8

Notice the in the case of k-means clustering and multiclasga) Original Bullseye 3 cores, (b) K-means Clustering.
spectral clustering, the number of clusters is one more @f th Dataset.

original, this was done to provide a certain error margeté t s S o R
experiments and visualiza how the classes distributiondcou | =+ o N T,
chan ge. o o e, ’* : o ) ﬂww:% .
It can be seeing that even when the semisupervised analys‘%os = r % }: %05 - ;, & **2; a
does not enhances the performances in a great measurest giv® | o 3‘:;’%&:?’ e 5 " — W;&X
a certain structure to the clustering, and the clusterimgrer | ' : N ’
can be attribute to the extra class restriction, moreovat th = “ .. ’ o e o .
class is usually adjacent to another and can be correctéd wit L . ~° @ . . | L
Feature 1 Feature 1

) ) . (c) Multiclass Spectral Clusteringd) Multiclass Spectral Clustering
TABLE V: Multiclass Spectral Clustering performances with con- with regular affinity matrix. with constraint affinity matrix.

straint affinity matrix..
Fig. 3: Results for Bulleye3 Dataset.

Dataset k Y Us Os J £
Aggregation 8 0.00 0.6508 0.2825 38.8230 0.9773
Bullseye2 3 0.00 0.1931 0.2699 0.5590 0.9997
Bullseye3 4 1.00 —-0.1761 0.5455 6.9584 0.9318 . . .
Clusters2Circlel | 4 | 0.00 | 06684 | 06277 | 2.9568 | 0.9847 a hierarchical clustering procedure.
Clusters2Noise 4 0.00 0.4821 0.7385 1.3175 0.9731
Clusters3 4 0.01 0.7674 0.2559 20.5451 0.9497
ClustersSNoise | 7 | 0.00 | 0.6179 | 06982 | 3.9521 | 0.9856 B. Images
Compound 6 0.01 0.5413 0.3033 385231 0.9202
D31 32 | 000 | 07577 | 01986 | 1885219 | 0.9270 In general, we can appreciate that taking advantages of the
Gaﬂggaens " f.) 8;81 8;%% 8:22‘7‘2 ;g;gg;‘f 8;23?2’ original labels of data clustering performance can be ecdwkn
HappyFace 3 | 0.00 | 06377 | 0.3986 | 05420 | 0.9993 We set to be constant valuéthe affinity value between data
Jain 3 0.00 0.5861 0.3481 95113 0.9932 H AR H H H
e YT B o Broy e points priori established to belong into the same cluster in
Pathbased 4 | 001 | 06325 | 02702 | 79252 | 0.9513 accordance the labels. Nonetheless, from experimentaltses
Spiral 4 | 100 ] —01963 | 04985 | 49115 | 09341 ] e can note that setting a constant value for connected data



(a) Unsupervised analysis eigenvet) Semisupervised analysis eigen-

to

Fig. 5: Eigenvector Plot for unsupervised and semisupervisedsisal

(a) Image 60079 resized tg/8 of the original size.
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(b) Image 118035 resized tg/8 of the original size.

Fig. 4: Resized Images.
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of image4(a).

(a) Regular affinity matrix.
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(a) Unsupervised analysis eigenvgb) Semisupervised analysis eigen-
tors. vectors.

Fig. 7: Eigenvector Plot for unsupervised and semisuperviseqsisal
of image4(b).

(b) Constraint affinity matrix.

Fig. 8: Segmentation of imagé(b) with multiclass spectral cluster-
ing.

semi-supervised extensions should not only take into adcou
information given by original data but also that given by
eigenvectors.

As mentioned in the toydata results section, a hierarchical
procedure can be added to the semisupervised analysis to
enhance the performance of the segmentation, this is Yysual
achievable in the segmentation images, since adjacenteof t
clusters is regular. Moreover if considering the resolutmss

TABLE VI: Multiclass Spectral Clustering with Regular Affinity

Fig. 6: Segmentation of imagé(a) with multiclass spectral cluster- Matrix

ing.

points is not a stable approach. It works well when some
compactness level is guaranteed. This can be attributed to 145086 | 25 | 0.3849 | 0.3100 | 3.9569 | 0.2735
either selection of parametéf is not an arbitrary task and

Image k Us Os J Em

12003 8 0.6070 | 0.3187 | 7.9393 | 0.7008
60079 5 0.6062 | 0.2925 | 7.0013 | 0.7184
37073 | 13 | 05358 | 0.3133 | 54993 | 0.5722

113044 | 7 0.6339 | 0.3187 | 7.7124 | 0.6478

118035 | 22 | 04810 | 0.3499 | 6.1655 | 0.3967




TABLE VII: Multiclass Spectral Clustering with Constraint Affinity
Matrix [7]
Image k Y Us Os
12003 | 8 25 0.6926 | 0.3319 [8
60079 | 5 25 0.6706 | 0.2795
37073 | 13 10 0.5631 | 0.2786
113044 | 7 25 0.6690 | 0.3029 [9]
145086 | 25 100 0.5569 | 0.2692
118035 | 22 5 05273 | 0.3123
Image k Y J
12003 | 8 100 101774 [10]
60079 | 5 25 113640
37073 | 13 10 6.2830
113044 | 7 5 85933
145086 | 25 100 5.8939
118035 | 22 0 7.4803 (11]
Image k Y Em
12003 | 8 0 0.7058
60079 | 5 0 0.7184 [12]
37073 | 13 | 001 0.5840
113044 | 7 0 0.6513
145086 | 25 | 0.00001 0.5225
118035 | 22 0 0.4843 [13]
.. . . [14]
for the resizing transformation, performance can be peedli
[15]

V. CONCLUSIONS ANDFUTURE WORK

Semi-supervised approaches take place under the premise
that by adding priori true information about the original
data, i.e., labels to set in advance the cluster memberghip o
some data points, clustering performance can be signifjcan
enhanced. In this work, we presented a basic semi-supdrvis
extension for basic multi class spectral clustering byirsgta
constant value for connected data points. From experirhen
results, method showed to work well when some compactne
and separability level is guaranteed. This fact can bebated
to parameter selection for constrained affinity matrix mu
be done taking into consideration the original featurexspa
representation but eigenspace information as well.

As a future work, new semi-supervised extensions for
spectral clustering are to be designed where formulatiah ar
parameter tunning are carried out in such way eigenvecto
are separable.
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