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On the groups number estimation for unsupervised
clustering

C. Castro, A. E. Castro, D. H. Peluffo, G. Castellanos

Abstract—Category 2. Clustering techniques usually requires
manually set parameters so the classification task may be
correctly carried out, one of the most common being the number
of groups or clusters in which data should be separated, yet this
relies in a prior knowledge of the data nature. In this work a
comparison among different approaches for finding the number
of groups is shown, such as singular value decomposition (SVD),
analysis of the multiplicity of the greatest eigenvalues from the
affinity matrix, and the percentage of the cumulative sum of the
singular values of the affinity matrix. The spectral nature of the
estimation process as well as the different datasets used, infers
that the results rely only in the internal information of dat a
matrixes. Results exhibits both limitations and advantages for
each method, weather directly related with the nature of thedata,
or limited by the process structure and definition. Nonetheless
these guidelines will be helpful for deciding which estimation
technique best applies for clustering data regardless its origin.

Index Terms—Affinity matrix, clustering, eigenvalues, number
of groups, singular values, spectral analysis.

I. I NTRODUCTION

UNSUPERVISED clustering stands as one of the building
blocks in data analysis, however automatic estimation

of the correct or suitable number of groups remains as an
open issue in most of the clustering techniques, since no uni-
versal satisfactory solution has been achieved [1]. Yet several
methods for automatically finding the number of clusters, have
shown good performance [2] for clustering, results are limited
to the model-based nature of the process and this is not suitable
for most unsupervised learning methods [3].
A most general approach arises from the spectral analysis, in
dimensionality reduction processes [4], [5], analysis of the
magnitude and multiplicity of the eigenvalues and singular
values is used for dimensionality reduction and extraction
of relevant features, moreover this analysis suggest that the
eigen-analysis of the data can be also used for determine
which number of clusters best fits the distribution of the data.
In [6] and [7], (dis)similarity information extracted from the
computation of affinity matrixes is used to reveal internal
information of the data structure as well as the numbers of
groups.

In this work, spectral information such as the eigen-values
and singular value decomposition is studied as a method for
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finding the proper number of groups from a data-set in spite of
its nature; this comparison attempt to illustrate independence
of the estimation technique from the data structure.
The simplicity in the used algorithms, makes necessary heuris-
tic tuning of the decision parameters; and even though non
universal parameter can be found, the behavior consistencyof
the studied methods showed that a relative small homogeneous
sample from an large data-set provides enough information for
the so called manual tuning, hence reducing the computation
cost of the posterior clustering technique.

II. T HEORETICAL FRAMEWORK

A. Singular Value Decomposition

Let X be an n× p matrix, where n is the number of
observations, andp the number of features to be a full rank
matrix, this is

rk(X) = min(n, p)

We define the normalized feature matrixX̂ as follows

X̂ =

√
pX

‖X‖2F
(1)

where‖·‖F, denotes the frobenius norm.
The SVD of a normalized matrix̂X is the decomposition of
X̂ into the product of three matrixes as follows[8]

X̂ = UΣΣΣV⊤ =
r

∑
k=1

σσσkkkukv
⊤
k (2)

where r = min(n, p), Un×n and Vp×p are the left and right
singular matrixes respectively, andΣΣΣn×p is a matrix with the
singular valuesσσσkkk along its diagonal and zeros everywhere
else.
So the norm of the normalized feature matrix can be also
expressed as

∥

∥X̂
∥

∥

2
F =

n

∑
i=1

p

∑
j=1

x̂2
i j = p=

rk(X̂)

∑
l=1

σ2
l (3)

and the value of the number of groupsk, can be selected so
that

k= argmin

{

α · p≤
k

∑
l=1

σ2
l

}

(4)

whereα represents a free parameter to be tuned according to
the complexity of the data. From (3) it is possible to infer that
α must be a value between 0 and 1.



B. Analysis of the affinity matrix: Eigenvalues

Let X be an n× p matrix, where n is the number of
observations, andp the number of features, we define the
trivial affinity matrix (Â) as,

Â = XX⊤ (5)

and the exponential affinity matrix with local scaling factor
as,

Â i j = exp

(−d2(xi ,x j)

σiσ j

)

(6)

wherexi is each data vector, dist(xi ,x j) is the distance between
xi andxi. σi is the local scale,

σi = dist(xi ,xN) (7)

wherexN is theN′th neighbor ofxi . Then defineD to be the
diagonal matrix

Dii =
n

∑
j=1

Â i j

and construct the normalized affinity matrix

L = D−1/2ÂD−1/2

Finally the eigenvaluesλi of this matrix are found and sorted
in descending order and the multiplicity of those equal to
one is chosen as the number of groups. Since the complexity
of the data may cause that the most significant eigenvalues
slightly differ from 1, a tolerance parameterβ is introduced,
thus choosing the number of groups as

k= numel(1−β < λi < 1+β) (8)

C. A different approach:AQ−α affinity matrix

Q− α algorithm [9], is used to select relevant features
from an affinity matrix containing information from the inner
products of the observations and a weighting vector.AQ−α
is the affinity matrix,ααα is the weighting vector andQ is a
rotational orthonormal matrix.

Let M be a p × n matrix, defined asM = X⊤ =
(m1,m2, ...,mp)

⊤, whereX is the feature matrix,n the number
of observations andp the number of features, with each row
vector (mi) preprocessed so that it has zero mean, and unit
norm. Affinity matrix can be obtained as:

Aα = M⊤diag(ααα)M (9)

The solution of the following optimization problem gives in-
formation about the relevant features (This method iteratively
find and tuneQ andα):

max
α ,Q

tr(Q⊤AαAαQ) =
p

∑
i=1

λ 2
i (10)

s.t. Q⊤Q = Iq, ααα⊤ααα = 1

From equation (10) we can write the rotated affinity matrix
asAQ−α = Q⊤AαAαQ. As the trace ofAQ−α represents the
sum of the squared eigenvalues ofAα and this matrix holds
the information among observations, it can be inferred than
its diagonal could give information to determine the number
of groups in which data should be separated.
The value ofk can be estimated from the diagonal ofAQ−α
and an accumulated value over the trace of this matrix, it is
introduced a cumulative valor vector as:

z=
diag(AQ−α)

tr(AQ−α)

and the value ofk is chosen considering that it satisfies the
following:

k

∑
i=1

zi ≈
β

100
(11)

whereβ is an accepted value of the cumulative percentage for
the trace of the matrixAQ−α .

III. E XPERIMENTAL SETUP

Public domain databases formatted into numeric arrays were
used for the analysis and study of the estimations methods
previously proposed. TableI1 summarizes the real data used
for the analysis, and exhibits the high variability betweendata
nature.

TABLE I: Database Summary

Dataset Source n p k Description
Auto mpg [10] 398 6 2 Multivariate real attributes on au-

tomobile description concerning to
city-cycle fuel consumption.

Biomed [11] 194 5 2 Multivariate real attributes on
blood measurements for ”normal”
and ”carrier” samples.

Breast [10] 683 9 2 Multivariate integer attributes on
breast cancer samples.

Diabetes [10] 768 8 2 Multivariate integer attributes on
glucose and insulin doses for di-
abetes patients.

Glass [10] 214 9 4 Multivariate real attributes on 6
types of glass; defined in terms of
their oxide content.

Heart [10] 297 13 2 Multivariate real and integer at-
tributes on heart symptoms and
ECG wave variations.

Imox [11] 192 8 4 Multivariate real attributes for dig-
ital charactersI,M,O,X.

Iris [10] 150 4 3 Multivariate real attributes from
size measurements on iris plants.

Liver [10] 345 6 2 Multivariate real and integer at-
tributes on blood tests sensitive to
liver disorders.

Mfeat-kar [11] 2000 64 10 Karhunen-Love coefficients of
handwritten numerals (0-9).

Mfeat-zer [11] 2000 47 10 Zernike coefficients of handwritten
numerals (0-9).

Satellite [10] 6435 36 6 Multivariate integer attributes on
multi-spectral values of pixels in
3x3 neighborhoods in a satellite
image.

Soybean1 [10] 266 35 15 Multivariate categorical attributes
on Michalski’s famous soybean dis-
ease.

Texturel [11] 81920 7 5 N/A
Wine [10] 178 13 3 Multivariate real and integer at-

tributes derived from the chemical
analysis of wine samples.

1Where n, p, k refers to the number of instances, attributes and classes
respectively



In addition, to avoid errors due to data redundancy, duplicated
samples of each dataset where removed during each process
as well as feature columns with most zero elements, in order
to avoid errors in distance measures, and eigenvalue accuracy.

Taking into account that some datasets contains high num-
ber of observations, random homogeneous subsets, each with
200 instances are chosen, this skewness allows to observe the
direct relationship among the spectral information given by
the internal structure and the number of classes.

A. Methods and Algorithms

Algorithm 1 Singular Value Decomposition,α tuning

1) Initialization: define theααα vector parameter for tuning with a
small enough step size, from a suggested 0.75 start point to
1-step size;

2) Normalize the data matrix with respect to its frobenius norm
and rank as shown in (1).

3) Compute the singular value decomposition for the normalized
matrix.

4) Calculate the sum of each singular value, until que condition
from (4) is accomplished for each of the elements in theααα
vector.

5) Establish whichααα subset vector results in the nearest or equal
value of the desired number of groups and compute its mean
and standard deviation values.

Algorithm 2 Higher eigenvalues of the affinity matrix

1) Compute eachσi for eachxi ∈ X using the equation7.
2) Compute the affinity matrix

Âi j = exp
(−d2(xi ,x j )

σi σ j

)

with Âii = 0.

3) DefineD to be a diagonal matrix withDii =
n
∑
j=1

Âi j

4) Construct the normalized affinity matrixL = D−1/2ÂD−1/2

5) Find the eigenvalues ofL and sort them in descending order.
6) Count the number of eigenvalues in the range[1− β ,1+ β ],

whereβ is a tolerance parameter close to 0.

Âi j = exp
(−d2(xi ,x j )

σiσ j

)

Algorithm 3 Q−α

1) InitializationM =X⊤, randomQ(0), mi ← (mi −µ (mi))
/

‖mi‖
2) Make G:

G =
(

MM ⊤
)

MQQ⊤M⊤

3) Computeααα as the eigenvector associated with the greatest
eigenvalue ofG.

4) ComputeAα = M⊤diag(ααα)M
5) Compute the orthonormal transformation:

Z(r) = A(r)
α Q(r−1)

6) ComputeQR decomposition:
[

Q(r),R
]

= qr
(

Z(r)
)

7) Increase r:r← r +1 and return to step 2.
8) ComputeAQ−α : AQ−α = Q⊤Aα AαQ
9) Computez: z= diag(AQ−α )

tr(AQ−α )

10) Find the value ofk that satisfies:
k
∑

i=1
zi ≈ β

100, were β is the

accepted percentage manually tuned.

IV. RESULTS AND DISCUSSION

Parameter tuning was performed for each method and data-
sets from sectionIII . The resulting values were averaged when
necessary, and summarized in TableII , exhibiting the mean
value and the respective standard deviation for each found
parameter, for studying the stability of the methods.

TABLE II: Results Summary

Database Method k Parameter
Name Mean STD

Auto mpg

Eigenvalues 3 N 35.5 3.02765
SVD 2 α 0.999804 1.00995E−4
Q−α 2 β 0.995 N/A

Biomed

Eigenvalues 2 N 30.5 5.91607
SVD 2 α 0.910268 4.6677E−2
Q−α 2 β 0.98 N/A

Breast

Eigenvalues 2 N 21.5 11.11305
SVD 2 α 0.876986 9.060357E−3
Q−α 2 β 0.97 N/A

Diabetes

Eigenvalues 2 N 30 6.20483
SVD 2 α 0.873526 4.4149E−2
Q−α 2 β 0.85 N/A

Glass

Eigenvalues 4 N 7.5 0.70710
SVD 4 α 0.999848 3.86E−05
Q−α 4 β 0.99 N/A

Heart

Eigenvalues 2 N 16 5.62731
SVD 2 α 0.989342 3.365373E−3
Q−α 2 β 0.85 N/A

Imox

Eigenvalues 4 N 3 0
SVD 4 α 0.964052 3.93695E−3
Q−α 4 β 0.98 N/A

Iris

Eigenvalues 3 N 15 3.89444
SVD 3 α 0.999 3.66606E−4
Q−α 3 β 0.99996 N/A

Liver

Eigenvalues 2 N 15 5.04975
SVD 2 α 0.935752 1.999652E−2
Q−α 2 β 0.97 N/A

Mfeat-kar

Eigenvalues 1 N 21 11.40175
SVD 10 α 0.731372 7.978403E−3
Q−α 10 β 0.89 N/A

Mfeat-zer

Eigenvalues 2 N 3.5 1.29099
SVD 10 α 0.988146 8.41194E−4
Q−α 10 β 0.9968 N/A

Satellite

Eigenvalues 6 N 2 0
SVD 6 α 0.997882 2.06094E−4
Q−α 6 β 0.9997 N/A

Soybean1

Eigenvalues 4 N 2 0
SVD 15 α 0.979428 9.62439E−4
Q−α 15 β 0.9988 N/A

Texturel

Eigenvalues 4 N 4.5 0.70710
SVD 5 α 0.989742 2.0395425E−3
Q−α 5 β 0.99998 N/A

Wine

Eigenvalues 3 N 33 4.47213
SVD 3 α 0.99997 1.41E−05
Q−α 3 β 0.97 N/A

Since Algorithms (1) and (2), go through an iterative process
to find the best suitable parameter, standard deviations are
computed, however even when the Algorithm (3), can be
computed several times for finding the most general parameter,
the random nature of the orthonormal matrixQ makes this
process unreliable, so standard deviation its not acceptedfor
this method.

Fig. 1 and Fig. 2, visually exhibits the behavior of the
mentioned parametersα andN, for some of the data-sets, both
cases show better estimation at low number of classes, and
decreases performance when the number of groups is large.

A. SVD

Heuristic tuning of theα parameter, was made starting from
0.75, with a step size 2E−5 to 0.99998. As expected, the
majority of the spectral information is held in the greatest



singular values, of the orthogonal decomposition of a feature
matrix; most of the databases allows to tune the decision
parameter close to the unity.

However this method exhibits a very important limitation,
since the normalization its made respect to the rank of the
matrix, the maximum number of groups that it can estimate
would be equal to this value.

(a)

(b)

Fig. 1: Estimation via SVD:1(a) Breast data-set with 2 classes,
Imox data-set with 4 classes and Texturel data-set with 5 classes.
1(b) Mfeat-zer data-set with 10 classes and Soybean1 data-set with
15 classes.

B. Eigen-Values from Affinity Matrixes

Internal data structure is expected to rely in the eigenvalues
and eigenvectors from feature matrixes; using the affinity
matrix permits to expose (dis)similarity characteristicsand
extract the spectral information required for the analysis.
Trivial matrix from equation (5) does not exposed real internal
information, but allows to analyze data from a symmetric
squared matrix, however since no define internal structure is
achieved, the analysis of the eigenvalues does not provide
any accuracy in the estimation of the number of groups.

Introducing local scaling into the exponential affinity ma-
trix, has probe to be a more accurate distribution of the internal
structure[7]. Thus the analysis of this structure easily can be
used to estimate the number of clusters, however its necessary
to find the proper number of neighbors used for scaled the
elements of the affinity matrix.

Being then an iterative time consuming process, it is limited
to the number of samples taken from the original data for
tuning, i.e. when the number of clusters is high, greater than
10, is necessary find the best number of neighbors from a large
data sample since the complete structure can not be find from
a small one, thus the method becomes inefficient.

Due to the multivariate and multicomponent nature of the
entire database (all data-sets used) theβ from Eq. (8) was set

for providing a wide range, thusβ = 1.5E−2.

(a)

(b)

Fig. 2: Estimation via eigenvalues:2(a)Breast data-set with 2 classes,
Imox data-set with 4 classes and Texturel data-set with 5 classes.
2(b) Mfeat-zer data-set with 10 classes and Soybean1 data-set with
15 classes.

C. AQ−α affinity matrix

(a)

(b)

(c)

Fig. 3: Estimation viaQ−α: 3(a)Breast data-set with 2 classes.3(b)
Imox data-set with 4 classes.3(c) Texturel data-set with 5 classes.



Analysis probed that the behavior of the proposed parameter
was similar to that proposed for the SVD, however even
though the behavior is similar, the orthonormal projection
where it comes from, does not have the same form as the
singular values, and provides a more narrow range for the
parameter, yet a more much small size-step is necessary for
tuning. From TableII it is seen that the smallestβ its close
to 0.85 while for SVD its correspondingα is 0.73. However
visual analysis of this method can only be appreciated from
the area of the diagonal vector used in (11). This is shown in
Fig. 3, where cutting the horizontal axis at the point on which
the percentage of the cumulated area is equal to 100·β must
match the expected number of groups.

V. CONCLUSIONS ANDFUTURE WORK

Spectral information has been shown useful for finding the
proper number of groups from small homogeneous subsets of
data. Hence reducing computation time for iterative clustering
processes, however limitations exist on each method, rank
dependency and high number of classes stands as some of
the major problems. Even if the methods are not capable of
determine the exact number of groups, they are useful for
giving a general idea of the complexity of the dataset, and
moreover on the relevance of the feature vectors, since they
are based on dimensionality reduction algorithms.

Standard deviation (STD) analysis of each data-set allows to
determine when a method is more appropriate, when STD is to
small(below 2 for the eigenvalues approach and 5E−4 in the
SVD method), heuristic tuning and stabilization of the method
becomes more difficult, and a correct number of groups may
not be found.

Some of the proposed parameters seem to have constant
behavior, then its possible to infer that data itself could
self-tune the value of the parameter from features such as
Euclidean distances, statistics measures as correlation and
standard deviation, among others. As future work then is
propose to find this self-tune characteristics and methods
from internal spectral information, to finally automatize the
estimation.
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