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On the groups number estimation for unsupervise
clustering

C. Castro, A. E. Castro, D. H. Peluffo, G. Castellanos

Abstract—Category 2. Clustering techniques usually requires

finding the proper number of groups from a data-set in spite of

manually set parameters so the classification task may be jts nature; this comparison attempt to illustrate indeeeme

correctly carried out, one of the most common being the numhe
of groups or clusters in which data should be separated, yethis
relies in a prior knowledge of the data nature. In this work a
comparison among different approaches for finding the numbe
of groups is shown, such as singular value decomposition (8%,
analysis of the multiplicity of the greatest eigenvalues fsm the
affinity matrix, and the percentage of the cumulative sum of he
singular values of the affinity matrix. The spectral nature d the
estimation process as well as the different datasets usedférs
that the results rely only in the internal information of data
matrixes. Results exhibits both limitations and advantage for
each method, weather directly related with the nature of thedata,
or limited by the process structure and definition. Nonethedss
these guidelines will be helpful for deciding which estimabn
technique best applies for clustering data regardless itsr@in.

Index Terms—Affinity matrix, clustering, eigenvalues, number
of groups, singular values, spectral analysis.

I. INTRODUCTION

of the estimation technique from the data structure.

The simplicity in the used algorithms, makes necessaryisieur
tic tuning of the decision parameters; and even though non
universal parameter can be found, the behavior consisteincy
the studied methods showed that a relative small homogsneou
sample from an large data-set provides enough informadion f
the so called manual tuning, hence reducing the computation
cost of the posterior clustering technique.

Il. THEORETICAL FRAMEWORK
A. Singular Value Decomposition

Let X be annx p matrix, wheren is the number of
observations, ang the number of features to be a full rank
matrix, this is

rk (X) = min(n, p)

NSUPERVISED clustering stands as one of the building _ _ R
blocks in data analysis, however automatic estimatioffe define the normalized feature matixas follows

of the correct or suitable number of groups remains as an
open issue in most of the clustering techniques, since no uni

versal satisfactory solution has been achievddYet several
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methods for automatically finding the number of clustersgha  \here |- |, denotes the frobenius norm.

shown good performance][for clustering, results are limited The SVD of a normalized matriX is the decomposition of
to the model-based nature of the process and this is nob&iitax into the product of three matrixes as follosk|

for most unsupervised learning metho@ [

A most general approach arises from the spectral analysis, i
dimensionality reduction processed4],[[5], analysis of the

.
X=UzV' =% oyuvy 2)
k=1

magnitude and multiplicity of the eigenvalues and singular ) )
values is used for dimensionality reduction and extractigherer = min(n.p), Un<n andVpxp are the left and right

of relevant features, moreover this analysis suggest tieat $ingular matrixes respectively, adthp is a matrix with the
eigen-analysis of the data can be also used for determff{ggular valuesoy along its diagonal and zeros everywhere
which number of clusters best fits the distribution of theadat®!Se- . .

In [6] and [7], (dis)similarity information extracted from the So the norm of the normalized feature matrix can be also
computation of affinity matrixes is used to reveal interngXPressed as

information of the data structure as well as the numbers of

groups.

A2 np a2 2
= XS =p= (o] 3)
H HF iz le i I

In this work, spectral information such as the eigen-values
and singular value decomposition is studied as a method f§td the value of the number of groupscan be selected so
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that

k:argmin{or-pg %af} (4)
|

=1
wherea represents a free parameter to be tuned according to
the complexity of the data. Fron3)it is possible to infer that
a must be a value between 0 and 1.



B. Analysis of the affinity matrix: Eigenvalues From equation10) we can write the rotated affinity matrix

Let X be annx p matrix, wheren is the number of 35Aq-a =Q'AqAqQ. As the trace of\q_4 represents the
observations, ang the number of features, we define th&Um of the squared eigenvalues/f and this matrix holds

trivial affinity matrix (A) as, _the i_nformation among _observa_tions, it can k_)e inferred than
its diagonal could give information to determine the number
A—=xxT (5) of groups in which data should be separated.

The value ofk can be estimated from the diagonal &§_«
and the exponential affinity matrix with local scaling factoand an accumulated value over the trace of this matrix, it is

as, introduced a cumulative valor vector as:
A —dz(Xi Xj) diag/Ag-a)
Lo ) 7= —— =
Ajj exp(ioi 5 ) (6) tr(Ag-a)

wherex; is each data vector, dis, x; ) is the distance betweenand the value ok is chosen considering that it satisfies the

Xi andx;. g; is the local scale, following:
& B
oi = dist(xi, x 7 ZIZi N (11)
i ( i N) ( ) pa 100
wherexy is the N'th neighbor ofxi. Then defineD to be the wherep is an accepted value of the cumulative percentage for
diagonal matrix the trace of the matriq_q.
n
D = Z Aij Ill. EXPERIMENTAL SETUP
=1 Public domain databases formatted into numeric arrays were

used for the analysis and study of the estimations methods
previously proposed. Tablé summarizes the real data used
L — D-Y2Ap-1/2 for the analysis, and exhibits the high variability betwekta
nature.
Finally the eigenvalue; of this matrix are found and sorted
in descending order and the multiplicity of those equal to

and construct the normalized affinity matrix

TABLE I: Database Summary

; H it pPataset Source n p k Description
one is chosen as the number of groups._ Slnge the ?Omple Auto_mpg [10 398 6 2 | Multivariate real attributes on au-
of the data may cause that the most significant eigenvalues tomobile description concerning tg
slightly differ from 1, a tolerance parametgris introduced, _ city-cycle fuel consumption.
. Biomed [11] 194 5 2 Multivariate real attributes on
thus ChOOSIng the number of groups as blood measurements for "normal”
and “carrier” samples.
Breast [10 683 9 2 Multivariate integer attributes on
k= numel(l - B <Ai<1+ B) (8) breast cancer samples.
Diabetes [10 768 8 2 Multivariate integer attributes on
glucose and insulin doses for dif
R H H abetes patients.
C. A different approaChAQ_a aﬁmlty matrix Glass [10 214 9 4 Multivariate real attributes on 6
Q — a algorithm P], is used to select relevant features ypes of glass; defined in terms qf
from an affinity matrix containing information from the inme —rearn [10] 707 | 13 | 2 | Multvariate real and mteger at
products of the observations and a weighting vecty. o té'cbueteviafg vgﬁgiitorfgmpmms i
is the affinity matrix,a is the weighting vector an@ is a Tmox 0] 192 8 | 4 | Multivariate real attributes for dig-
rotational orthonormal matrix. - o N EE - 'htﬂa'lghafé?ﬂs'l’\l"'otfb S
. . T ris ultivariate real attributes from
Let M be a pxn matrix, defined asM = X' = size measurements on iris plants.
(mg,ma,...,mp) ", whereX is the feature matrixy the number Liver [10] 345 [ 6 | 2 | Multivariate real and integer at-
. . tributes on blood tests sensitive tp
of observations ang the number of features, with each row liver disorders.
vector ;) preprocessed so that it has zero mean, and uhiffeat-kar [30] 2000 | 64 | 10 | Karhunen-Love coefficients of
Affinity matrix nb btained . handwritten numerals (0-9).
norm. y ma ca € optained as: Mfeat-zer [11] 2000 | 47 | 10 | Zernike coefficients of handwritte
numerals (0-9).
EEVEIET Satellite [10] 6435 36 6 Multivariate integer attributes on
AO! =M dlag(a)M (9) multi-spectral values of pixels in
) . o . ) ) 3x3 neighborhoods in a satellite
The solution of the following optimization problem gives in image.

: ; f : Soybeanl [10 266 35 | 15 | Multivariate categorical attributes
;pr(;natlgn abe%Jt th(;e r)elevant features (This method iteeati on Michalski's famous soybean did-
ind and tun anda): ease.

Texturel (17 81920 7 5 N/A
p Wine [10 178 13 3 Multivariate real and integer at-
T _ 2 tributes derived from the chemical
T%Xtr(Q AC’A"Q) - 'Zl)\l (10) analysis of wine samples. 1
3 =

T T IWheren, p, k refers to the number of instances, attributes and classes
st.t. Q' Q=lg, aa=1 respectively



In addition, to avoid errors due to data redundancy, dugdita IV. RESULTS AND DISCUSSION

samples of each dataset where removed during each procegsarameter tuning was performed for each method and data-

as well as feature columns with most zero elements, in ordglis from sectioil . The resulting values were averaged when

to avoid errors in distance measures, and eigenvalue ACUrRecessary, and summarized in Tabile exhibiting the mean
Taking into account that some datasets contains high nupdjye and the respective standard deviation for each found

ber of observations, random homogeneous subsets, each Wilfameter, for studying the stability of the methods.
200 instances are chosen, this skewness allows to observe th

direct relationship among the spectral information given b TABLE II: Results Summary
the internal structure and the number of classes.

Database Method k Parameter
Name Mean STD
; Eigenvalues| 3 N 355 3.02765
A. Methods and Algorithms SVD 2 a 0.099804 | 1.0099%F 4
Auto_mpg Q—a 2 B 0.995 N/A
i f P f Eigenvalues| 2 N 305 5.91607
Algorithm 1 Singular Value Decompositiomy tuning _— =D 5 0910768 A6 E=2
1) Initialization: define thea vector parameter for tuning with a fome = %;Vglues g ﬁ 2'192 11’\1/1A305
small enough step size, from a suggested 0.75 start point tg gsvo > o 0876986 | 9.06035F —3
1-step size; Breast Q—a 2 B 0.97 NTA
2) Normalize the data matrix with respect to its frobeniusmmo Eigenvalues| 2 N 30 6.20483
and rank as shown ir), Diabetes SVDG g g 0%7;;’15 44}\“}:52
3) Com'pute the singular value decomposition for the nomedli Eigenvalues| 4 N -z 070710
matrix. _ _ o SVD 4 a 0.099848 | 3.86E 05
4) Calculate the sum of each singular value, until que candit Glass Q-a 4 B 0.99 N/A
from (4) is accomplished for each of the elements in the Eigenvalues| 2 N 16 5.62731
vector Heart SVD 2 a 0.089342 | 3.36537E — 3
’ . . - 2 0.85 N/A
5) Establish whichar subset vector results in the nearest or equal Eig%m,;ues y ﬁ 3 0
value of the desired number of groups and compute its mean SVD Z a 0.964052 | 39369E 3
and standard deviation values. Imox Q-a 1 B 0.98 N/A
Eigenvalues| 3 N 15 3.89444
) SVD 3 a 0.999 3.6660&E 4
Iris Q-a 3 B 0.99996 N/A
R R B e i Eigenvalues| 2 N 15 5.04975
Algorithm 2 Higher eigenvalues of the affinity matrix _ =5 5 = o375 099G E—
1) Compute eachs; for eachx; € X using the equatiof. Liver - Q*"’l i ﬁ 02917 11’1/0A175
- . Igenvalues .
2) Compute tﬁgzaﬁ)':‘)'ty matrix SVD 10 | & | 0731372 | 797840 3
Aj = exp<7a s ) Mfeat-kar Q—a 0| P 0.89 N/A
oA =l Eigenvalues| 2 N 35 1.29099
with Ajj =0. N Vieat SVD 10| @ | 0988146 | BA119& 4
1 i Wit — S A eat-zer Q—a 10 B 0.9968 N/A
3) DefineD to be a diagonal matrix witl; = jglA,J Eigenvalies| 6 N = o
. - A SVD 6 0.097882 | 2.0609& 4
4) Construct the normalized affinity matrix= D~%/2AD~1/2 Satellite o a & g 59997 A
5) Find the eigenvalues df and sort them in descending order. Eigenvalues| 4 N 2 0
6) Count the number of eigenvalues in the rarige- 8,1+ 3], Soybeant SVD 12 g obggggga 9,62N4;ZQE*4
i —a .
wheref3 is a tolerance parameter close to 0. Eigenvalies| 4 N - 070710
SVD 5 a 0.989742 | 2.039542% 3
A —d2(x; %) Texturel Q—a 5 B 0.99998 N/A
Aj = eXp(T_’J) Eigenvalues| 3 N 33 447213
e i SVD 3 a 0.99997 T41E — 05
Wine Q0—a 3 B 0.97 NIA
Algorithm 3 Q—a
1) InitializationM =X, randomQ(®, mj + (m; — (mi))/|Imi Since Algorithms {) and @), go through an iterative process
2) MakeG: to find the best suitable parameter, standard deviations are
G= (MM T) MQQ M T computed, however even when the Algorithi®),(can be

3) Computea as the eigenvector associated with the greatet%?mpmed several times for finding the most general paramete
eigenvalue ofG. e random nature of the orthonormal mat@x makes this

4) ComputeA, = M "diag(a)M process unreliable, so standard deviation its not accefpted
5) Compute the orthonormal transformation: this method.
Fig. 1 and Fig. 2, visually exhibits the behavior of the

7 — Ag)Q“*l) .
mentioned parametecsandN, for some of the data-sets, both
6) ComputeQR decomposition:| Q") R| = qr z(r>) cases show better estimation at low number of classes, and
7) Increase 1t < r+1 and return to step 2. decreases performance when the number of groups is large.
8) ComputeAq ¢: Ag-a = QTAgAQ
9) Computez. z= %ﬁi;’) A. SVD

K . . .
10) Find the value ok that satisfies:y 7 ~ 15, were 8 is the ~ Heuristic tuning of thex parameter, was made starting from
i 0.75, with a step size R 5 to 099998. As expected, the

i=1
ted t lly tuned. o i A ;
accepted percentage manually tune majority of the spectral information is held in the greatest




singular values, of the orthogonal decomposition of a featufor providing a wide range, thu8 = 1.5E72.
matrix; most of the databases allows to tune the decision
parameter close to the unity.
However this method exhibits a very important limitation,
since the normalization its made respect to the rank of the ’
matrix, the maximum number of groups that it can estimate

. =z h
would be equal to this value. WL
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oy f ; Fig. 2: Estimation via eigenvalueg{(a) Breast data-set with 2 classes,
=y b S o o Imox data-set with 4 classes and Texturel data-set with Ssel&
} : : ; . 2(b) Mfeat-zer data-set with 10 classes and Soybeanl data-#et wi
s % % e A 15 classes.

(b)
. L . . C. Ag_q affinity matrix
Fig. 1: Estimation via SVD:1(a) Breast data-set with 2 classes,

Imox data-set with 4 classes and Texturel data-set with Ssela
1(b) Mfeat-zer data-set with 10 classes and Soybeanl data-Het wi
15 classes.

B. Eigen-Values from Affinity Matrixes -

Internal data structure is expected to rely in the eigerasalu
and eigenvectors from feature matrixes; using the affinity
matrix permits to expose (dis)similarity characteristasd
extract the spectral information required for the analysis
Trivial matrix from equation) does not exposed real internal
information, but allows to analyze data from a symmetric
squared matrix, however since no define internal structire i
achieved, the analysis of the eigenvalues does not provide .
any accuracy in the estimation of the number of groups.

Introducing local scaling into the exponential affinity ma-
trix, has probe to be a more accurate distribution of therirate
structuref]. Thus the analysis of this structure easily can be
used to estimate the number of clusters, however its negessa
to find the proper number of neighbors used for scaled the
elements of the affinity matrix. )

Being then an iterative time consuming process, it is lichite )
to the number of samples taken from the original data for
tuning, i.e. when the number of clusters is high, greaten tha
10, is necessary find the best number of neighbors from a large
data sample since the complete structure can not be find from
a small one, thus the method becomes inefficient.

Due to the multivariate and multicomponent nature of thigg. 3: Estimation viaQ— a: 3(a) Breast data-set with 2 class&gb)
entire database (all data-sets used)fHeom Eq. @) was set Imox data-set with 4 classe8(c) Texturel data-set with 5 classes.




Analysis probed that the behavior of the proposed parametgn L. Zelnik-Manor and P. Perona, “Self-tuning spectralistering,” Ad-

was similar to that proposed for the SVD, however even
though the behavior is similar, the orthonormal projectioqg]

vances in Neural Information Processing Systemsver. 2, no. 1601-
1608, pp. 1601-1608, 2004.
S. Lee and M. Hayes, “Properties of the singular valueodgmosition

where it comes from, does not have the same form as the for efficient data clustering,Signal Processing Letters, IEERoOI. 11,

singular values, and provides a more narrow range for the
parameter, yet a more much small size-step is necessary 119
tuning. From Tabldl it is seen that the smallef its close
to 0.85 while for SVD its corresponding is 0.73. However

no. 11, pp. 862 — 866, Nov 2004.

L. Wolf and A. Shashua, “Feature selection for unsupssdi and
supervised inference: the emergence of sparsity in a weghased
approach,” inComputer Vision, 2003. Proceedings. Ninth IEEE Inter-
national Conference qrOct 2003, pp. 378 —384 vol.1.

A. Frank and A. Asuncion, “UCI machine learning reposjt” 2010.

: . . ! 10]
visual analysis of this method can only be appreciated fro[m [Online]. Available: http://archive.ics.uci.edu/ml
the area of the diagonal vector used Ii)( This is shown in [11] R. Duin, P. Juszczak, P. Paclik, E. Pekalska, D. de &jdd. Tax, and

Fig. 3, where cutting the horizontal axis at the point on which
the percentage of the cumulated area is equal to g0@ust
match the expected number of groups.

V. CONCLUSIONS ANDFUTURE WORK

Spectral information has been shown useful for finding th
proper number of groups from small homogeneous subsets
data. Hence reducing computation time for iterative chiste
processes, however limitations exist on each method, ra
dependency and high number of classes stands as som
the major problems. Even if the methods are not capable
determine the exact number of groups, they are useful f
giving a general idea of the complexity of the dataset, and
moreover on the relevance of the feature vectors, since they
are based on dimensionality reduction algorithms.

Standard deviation (STD) analysis of each data-set allows
determine when a method is more appropriate, when STD is
small(below 2 for the eigenvalues approach akd % in the
SVD method), heuristic tuning and stabilization of the noeth
becomes more difficult, and a correct number of groups me
not be found. .

Some of the proposed parameters seem to have const
behavior, then its possible to infer that data itself coulua
self-tune the value of the parameter from features such as
Euclidean distances, statistics measures as correlation a
standard deviation, among others. As future work then i~
propose to find this self-tune characteristics and methoc
from internal spectral information, to finally automatizeet
estimation.
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