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Abstract

In this work, a nonsupervised algorithm for feature se-

lection and a non-parametric density-based clustering al-

gorithm are presented, whose density estimation is per-

formed by Parzen’s window approach; this algorithm

solves the problem that individual components of the mix-

ture should be Gaussian.

The method is applied to a set of recordings from

MIT/BIH’s arrhythmia database with five groups of ar-

rhythmias recommended by the AAMI.

The heartbeats are characterized using prematurity in-

dices, morphological and representation features, which

are selected with the Q-α algorithm. The results are

assessed by means supervised (Se, Sp, Sel) and non-

supervised indices for each arrhythmia. The proposed sys-

tem presents comparable results than other unsupervised

methods of literature.

1. Introduction

For Holter record analysis and interpretation, heartbeat

clustering is necessary, nevertheless, its automation rep-

resents several challenges due to factors, such as signal

length, noise and artifacts (patient movements, baseline

wander, etc.), dynamic behavior of signal by poor contact

between skin and electrode, and variability in the wave-

form by patient’s physiology and pathology [1]. Con-

sequently, non-supervised analysis of ECG signals is the

most appropriate, though, it involves other issues: compu-

tational cost, centroid initialization method, dissimilarity

measure selection, high dimensionality of features; most of

them are still open problems [2]. Several methods had been

reported regarding supervised and unsupervised learning.

In [3] was described a method to classify heartbeats us-

ing morphology, QRS complex duration, and RR inter-

vals, for which required a training set for the linear dis-

criminant classifier models. In [4] was described an un-

supervised method to cluster heartbeats from a recording

into 25 clusters and concluded that on average 98.5% of

the heartbeats in any cluster were from the same heart-

beat class. In [2] was described a method to detect VPC

(Ventricular Premature Contraction) using morphological

features and non-supervised analysis by means an algo-

rithm, which used partitional and hierarchical clustering.

In contrast to an unsupervised method, a supervised anal-

ysis needs expert labelling of each recording, which is a

time demanding and unflexible task, although achieved re-

sults are usually better; however, in these cases, an un-

supervised method can better work, since it is based on

generic and absolute features instead of specific labelling

and training [1]. In this work, a nonparametric density-

based clustering algorithm is presented, which estimates

densities by the Parzen window approach [5]. This parti-

tional algorithm solves the problem which raises that indi-

vidual components of the mixture density should be Gaus-

sian. In addition, since the density-based algorithms em-

ploy a soft membership function, the elements belonging

to each cluster have a membership grade instead of dis-

crete (binary) values like Minimum Sum of Squares based

Clustering (MSSC), and therefore, they generate a better

final partition. For the problem of the convergence to a lo-

cal minimum, a centroid initialization stage is carried out

by using the JH-means algorithm, which applies MSSC

and dynamic movement of centroids, finding an appropri-

ate initial partition that generates a local optimal solution

[6]. The algorithm is applied to a set of recordings from

MIT/BIH’s arrhythmia database for five different groups

of arrhythmias, including all the types of heartbeats reco-

mmended by the AAMI. The heartbeats are characterized

using three prematurity indices [1], wavelet detail and ap-

proximation coefficients [7], Hermite [4], Fourier [7] and

morphological coefficients [2]. In order to reduce the com-

putational cost and to assess the relevance of each feature,

the Q-α algorithm is applied in a non-supervised version,

which automatically selects the most relevant features. The

algorithm is based on spectral properties of the Laplacian

of the feature’s measurement matrix [8].
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2. Methods

2.1. Arrhythmias, Records and Feature Set

For experimental studies, 14 from 48 recordings belong-

ing to MIT/BIH database were randomly selected. Record-

ings correspond to the channel 0 (MLII lead) are shown in

Table 2 (first column). According to the standard of the

AAMI (ANSI/AAMI EC57:1998/(R)2003) [3], the types

of arrhythmia analyzed in this work can be classified in

groups, as it is shown in Table 1. It is important to note

that some recordings exhibit very unbalanced classes. For

example, recording 215 only contains 1 F and 2 S, whereas

the number of normal heartbeats is 3194.

The initial feature set is chosen from previous works that

have shown good performance in wave morphology cha-

racterization, signal variability, and signal representation.

They have been employed in applications to detect heart-

beats of type N, S, V, F and Q, [2], [7], [4], [1] (Table 1).

The feature set is constitute by:

– Prematurity features: RR, post-RR, pre-RR period.

– Representation features: wavelet detail and approxima-

tion coefficients (db2), Hermite (11 bases), Fourier coeffi-

cients (1-20 Hz).

– Morphological features: QRS complex polarity,
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, where bi are the heartbeat samples.

The Q-α algorithm is applied to features set in order to

reduce the computational cost and to select the relevant

features. The algorithm is based on spectral properties of

the Laplacian of the feature’s measurement matrix [8].

2.2. Unsupervised classification

The classical technique of unsupervised classification

(grouping) is the partitional clustering or center-based

clustering (CBC), whose goal is minimizing an objec-

tive function to obtain an optimal solution via iterative

updating-centers. The objective function defines how good

a clustering solution is and it must be coherent or appro-

priate to the updating-centers function. The general iter-

ative clustering (GIC) is based on the H-means algorithm

[6]. There are several alternatives to the H-means algo-

rithm using the GIC model. In this work, both paramet-

ric and non-parametric density based on clustering (DBC)

algorithms are used: Gaussian expectation-maximization

clusterting (GEMC) and non-parametric DBC that uses

Parzen’s method. These algorithms employ a soft mem-

bership function and fixed weights. The GEMC objective

function is a linear combination of gaussian distributions

centered at each centroid and the goal is maximizing its

value. The objective function of GEMC can be written as:

GEM(X,Q) = −
n
∑

i=1

log





k
∑

j=1

p(xi/qj)p(qj)



 (1)

where p(xi/qj) is the probability of xi, since it is gener-

ated by a Gaussian distribution centered at qj , and p(qj)
is the prior probability of the cluster whose centroid is qj .

The log function is used for simplicity, and the minus sign

accounts for minimization. The member and weight func-

tions are:

mGEM (qj/xi) =
p(xi/qj)p(qj)

p(xi)
; wGEM (xi) = 1 (2)

The Bayes rule is used to compute mGEM , where p(xi)

is the evidence defined as p(xi) =
∑k

j=1 p(xi/qj). In the

parametric case, the term p(xi/qj) is a Gaussian distribu-

tion: N (µ,Σj), where µ = qj and Σj is the covariance

matrix for the j-th cluster.

In the non parametric case, Parzen’s method is used for

the estimation of membership function being the same as

GEMC, where the term p(xi/qj) is computed as follows:

p(xi/qj) =
1

nh

n
∑

i=1

K

(

x− xi

h

)

(3)

where K is the Gaussian kernel.

One of the biggest problems of the clustering is the

convergence to a local optimum; for this reason, there

are several initialization algorithms. In this work, the J-

means algorithm with H-means kernel (J-H-means) and

MSS as objective function is used [6]. After a random

initialization, every point pi out of a sphere of radius ε
(ε < 1

2 min ||qj − qi|| i 6= j) with center qj is considered

a centroid candidate. Thus, pi replaces a current centroid

qj . After updating, the objective function is evaluated us-

ing only the new centroid. Then, the original objective

function (with previous value f1
obj) is compared with the

new objective function value (f2
obj), and if f1

obj > f2
obj , the

process stops; otherwise, the algorithm starts again using

the same initial partition and its updates.

2.3. Performance

Performance is assessed in terms of the supervised in-

dices: sensitivity (Se), specificity (Sp) and selectivity (Sel),

for each group of arrhythmia, based on the database labels.

Let bi, haertbeats of class i, and bj , any type of heartbeat

different to class i. Let Ci, the set of heartbeats conformed

by bi and bj , where bi, generally are majority heartbeats

and bj is empty if the classification is perfect.

Se measures the ratio between (∀bi ∈ Ci) and (∀bi,j ∈
Ci), describing the percentage of true beats (bi) associated
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Table 1. Sets of arrhythmias of the MIT/BIH database with the recommended groups by AAMI.
AAMI N S V F Q

heartbeat Any beat not in the Supraventricular Ventricular Fusion Unknown

Description S,V,F or Q classes ectopic beat ectopic beat beat beat

Normal (N) Atrial Premature (A) Premature Ventricular Fusion of ventricular and normal (F) Paced (P)

Left bundle block (L) Aberrated atrial contraction (V) Fusion of paced Unclassified (Q)

Right bundle branch premature (a) Ventricular escape(E) and normal beat (f)

MIT-BIH block (R) Nodal (junctional)

heartbeats Atrial scape beat (e) premature beat (J)

type Nodal (junctional) Supraventricular

escape beat(j) premature beat (S)

Table 2. Clustering performance
Parzen’s method GEMC

Rec. N S V F Q f1/f2 N S V F Q f1/f2
100 beats 2237 33 1 0 0 2237 33 1 0 0

Se (%) 100 100 100 1 Se (%) 100 93.94 100 0.99

Sp (%) 100 100 100 Sp (%) 94.12 100 100

Sel (%) 100 100 100 Sel (%) 99.91 100 100

106 beats 1506 0 520 0 0 1506 0 520 0 0

Se 97.81 100 0.99 Se 99.67 96.53 0.98

Sp 100 97.81 Sp 96.53 99.67

Sel 100 94.02 Sel 98.82 99.01

107 beats 0 0 59 0 2076 0 0 59 0 2076

Se 100 99.95 1 Se 100 100 1

Sp 99.95 100 Sp 100 100

Sel 98.33 100 Sel 100 100

111 beats 2121 0 1 0 0 2121 0 1 0 0

Se 100 100 1 Se 100 100 1

Sp 100 100 Sp 100 100

Sel 100 100 Sel 100 100

113 beats 1787 6 0 0 0 1787 6 0 0 0

Se 100 83.33 0.95 Se 100 83.33 0.95

Sp 83.33 100 Sp 83.33 100

Sel 99.94 100 Sel 99.94 100

119 beats 1541 0 444 0 0 1541 0 444 0 0

Se 100 100 1 Se 100 100 1

Sp 100 100 Sp 100 100

Sel 100 100 Sel 100 100

123 beats 1513 0 3 0 0 1513 0 3 0 0

Se 100 100 1 Se 100 100 1

Sp 100 100 Sp 100 100

Sel 100 100 Sel 100 100

207 beats 1542 106 210 0 0 1542 106 210 0 0

Se 97.34 97.14 98.1 0.98 Se 97.42 0 98.1 0.85

Sp 97.78 98.63 98.97 Sp 65.4 100 98.06

Sel 99.54 80.95 92.38 Sel 93.27 0 86.55

215 beats 3194 2 164 1 0 3194 2 164 1 0

Se 100 0 99.39 0 0.85 Se 100 0 99.39 0 0.85

Sp 98.18 100 100 100 Sp 98.18 100 100 100

Sel 99.91 0 100 0 Sel 99.91 0 100 0

217 beats 244 0 162 260 1540 244 0 162 260 1540

Se 100 93.83 95.38 99.81 0.99 Se 99.59 88.27 92.66 99.87 0.98

Sp 99.34 99.76 99.9 99.25 Sp 98.62 99.9 99.64 99.25

Sel 94.94 96.82 99.2 99.68 Sel 90 98.62 97.17 99.68

220 beats 1951 94 0 0 0 1951 94 0 0 0

Se 98.82 92.55 0.97 Se 99.74 46.81 0.84

Sp 92.55 98.82 Sp 46.81 99.74

Sel 99.64 79.09 Sel 97.49 89.8

221 beats 2029 0 396 0 0 2029 0 396 0 0

Se 99.9 99.75 1 Se 99.9 99.75 1

Sp 99.75 99.9 Sp 99.75 99.9

Sel 99.95 99.5 Sel 99.95 99.5

230 beats 2253 0 1 0 0 2253 0 1 0 0

Se 100 100 1 Se 100 100 1

Sp 100 100 Sp 100 100

Sel 100 100 Sel 100 100

234 beats 2698 50 3 0 0 2698 50 3 0 0

Se 99.96 76 100 0.95 Se 99.96 78 100 0.95

Sp 77.36 99.96 100 Sp 79.25 99.96 100

Sel 99.56 97.44 100 Sel 99.59 97.5 100
∑

beats 24616 291 1964 261 3616 µ(f1/f2)
Total µ(Se) 99.53 74.84 99.26 47.7 99.88 99.75 50.35 98.5 46.33 99.93

µ(Sp) 96.02 99.57 99.7 99.95 99.62 0.98 89.39 99.95 99.7 99.82 99.62 0.96

µ(Sel) 99.5 76.25 98.42 49.6 99.84 98.38 64.55 98.64 48.59 99.84
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to Ci, that are detected by the system. Sp measures the

ratio between (∀bj /∈ Ci) and (∀bi,j /∈ Ci), measuring

how well the system rejects beats bi no associated to Ci.

Sel assesses the ratio between (∀bi ∈ Ci) and (∀bi ∈ Ci)∪
(∀bi /∈ Ci), describing the percentage of true beats (bi)
associated to any class, which are detected by te system.

In this work, a nonsupervised index is used, through the

relation between the true objective function value and the

computed value using the final partition, i.e., f1/f2, where

f1 and f2 represent the expected value and the computed

value, respectively. Consistent to the clustering method,

the index was computed using the objective function of

GEMC (see (1)). Since f2 ≥ f1, this clustering index de-

fines a good clustering when its value is nearly 1.

3. Results and discussion

General results are shown in Table 2. Used specific

recordings are listed in the first column; the performance

of both supervised and nonsupervised methods using the

Parzen’s method is included in the second column, taking

into account, all groups of arrhythmias (Table 1) and the

heartbeats related to each specific arrhythmia. The third

column shows the performance for the parametric case,

with the same fields, as the second column. For the non-

supervised index, the Parzen’s method is 36% better than

the parametric method, this is, for 100, 106, 217, 207 and

220 recordings. In the two last recordings, the nonparamet-

ric improves notably the parametric (Table 2). The non-

supervised index is correlated to the supervised indices and

its average performance is superior in the nonparametric

case. In some recordings, appear, up to four arrhythmias.

For example, the recording 217, has the N, V, F and Q

groups. For Parzen’s method, only one recording (215) did

not separate two groups of arrhythmias, due to, heartbeats

of type A and F have similar morphologies. The DBC

methods offer good performance because these algorithms

use statistical information as the second moment and pos-

terior probability, and they are less sensitive to initializa-

tion than classical techniques. Parzen’s method, resolves

the problem of Gaussianity of the individual components

of the mixture, improving the performance regarding the

parametric case. J-means algorithm presents a good trade-

off between computational cost and accuracy, because it

computes the objective function value locally.

4. Conclusions and future work

This work describes a methodology to classify the main

cardiac arrhythmia types recommended by the AMMI, us-

ing partitional clustering based on general iterative model.

It demonstrates that CBC with an appropriate initializa-

tion algorithm can offer good performance from point of

view of cluster separability. As future work, an unsuper-

vised system for Holter records analysis will be proposed.

It will include appropriate stages for: segmentation, fea-

ture extraction, feature selection, center initialization and

unsupervised classification using spectral clustering.
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